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The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of� and� opioid receptors. The
combined use of selective opioid antagonists directed against�, � or � receptors and antisense probes directed against specific exons
MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subp
mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dos
(5–80 nmol) cerebroventricular actions of general and selective�, �, and�1 opioid receptor antagonists together with antisense probes dir
against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/OR
receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently
and sometimes eliminated following pretreatment with general,�, �, and�1 opioid receptor antagonists. Moreover, NPY-induced feed
was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 a
DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides,�-endorphin
and dynorphin A1–17 elicit feeding responses that are respectively more dependent upon� and� opioid receptors and their genes, the opi
mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed f
responses following glucoprivation or lipoprivation.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The ability to elucidate the roles of opioid receptor sub-
types in the mediation of feeding behavior (see review:[8])
was first enhanced by the development of selective opioid re-
ceptor subtype antagonists directed against�, �, and� recep-
tors, and subsequently by the use of antisense (AS) probes to
establish the relationship of the cloned receptors to opioid ac-
tions using sequences complementary to regions of specific

∗ Corresponding author. Tel.: +1 718 997 3543; fax: +1 718 997 3257.
E-mail address:richardbodnar@qc.edu (R.J. Bodnar).

exons of mRNA to down-regulate opioid receptor prote
[48]. The use of both of these in vivo pharmacological a
molecular techniques allows for the collection of conve
ing and complementary information about opioid-media
roles in food intake following homeostatic challenges a
administration of orexigenic agonists. Thus, food intake
body weight were reduced by both the�-selective antago
nist,�-funaltrexamine (BFNA)[5,67]and AS probes directe
against each of the four exons of the MOR-1 gene[38]. Glu-
coprivic feeding elicited by 2-deoxy-d-glucose (2DG) is re
duced by� (BFNA) and�1 (nor-binaltorphamine (NBNI))
antagonists[3–5,31] as well as AS probes directed again
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exons of the MOR-1 and KOR-1 genes[12]. Lipoprivic feed-
ing elicited by mercaptoacetate was reduced by� (BFNA),
�1 (NBNI) and� (naltrindole (NTI)) opioid receptor antag-
onists as well as AS probes directed against exons of the
MOR-1, KOR-1, and DOR-1 genes[64]. However, whereas
the pattern of�1 and� opioid antagonist-induced reductions
in feeding following food deprivation corresponded closely
with the respective abilities of AS probes directed against ex-
ons of the KOR-1 and DOR-1 genes, the ability of� opioid
antagonists to reduce deprivation-induced intake in rats and
mice was far more potent than AS probes directed against
exons of the MOR-1 gene[22,23]. This approach also pro-
vides more detailed information about the receptor mecha-
nisms mediating feeding elicited by opioid agonists. Feed-
ing elicited by OFQ/N1–13 is reduced by pretreatment with
AS probes directed against each of the three exons of the
KOR-3/ORL-1 gene[39]. Whereas feeding responses elicited
by the�-selective agonists, [D-Ala2, N-Me-Phe4, Gly-ol5]-
enkephalin (DAMGO), morphine and the active morphine
metabolite, morphine-6�-glucuronide (M6G) are each effec-
tively blocked by� (BFNA) antagonism, feeding elicited by
either DAMGO or morphine are blocked by AS probes di-
rected against exons 1 and 4, but not exons 2 or 3 of the
MOR-1 gene[40,41]. In contrast, M6G-induced feeding is
blocked by AS probes directed against exons 2 and 3, but
not exons 1 or 4 of the MOR-1 gene[40,41]. These effects
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nucleus of the amygdala (CeA) decreased feeding elicited by
PVN NPY[16]. Indeed within the PVN, NPY and naloxone
produce additive increases in c-fos activity in the CeA[49].
Further, whereas DAMGO promotes intake of a dilute sucrose
solution relative to chow, indicative of an opioid mediation of
reward, NPY promotes intake of the chow relative to the dilute
sucrose solution, indicative of NPY mediation of energy lev-
els[18]. The opioid receptor subtypes involved in the media-
tion of NPY-induced feeding have been examined. Whereas
cerebroventricular pretreatment with the� opioid antagonist,
BFNA or the �1 opioid antagonist, NBNI decreased feed-
ing elicited by a 5 ug (1.17 nmol) dose of NPY, central ad-
ministration of either the� opioid antagonist, NTI or the�
opioid antagonist, GNTI failed to alter NPY-induced feed-
ing [28,33]. To provide further analysis of these effects, the
present study examined the dose-dependent actions of gen-
eral (Ntx) and selective� (BFNA), � (NTI) and�1 (NBNI)
opioid antagonists together with AS probes directed against
each of the four exons of the MOR-1 gene and each of the
three exons of the DOR-1, KOR-1 and KOR-3/ORL-1 genes
upon feeding elicited by NPY.

2. Methods

2.1. Subjects and surgery
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ere also observed in analgesic assays and are sugges
ctions of different splice variants or isoforms of the MO
gene (for reviews, see[48,54]). Although �, �1, and to
lesser degree,� opioid antagonists significantly reduc

END-induced feeding, AS probes directed against exo
or 4 of the MOR-1 gene produced the most pronou

ffects upon BEND-induced feeding, firmly implicating
opioid receptor in mediating this response[59]. Although

1 and to a lesser degree,� and� opioid antagonists signi
cantly reduced DYN-induced feeding, AS probes dire
gainst exon 1 or 2 of the KOR-1 or KOR-3/ORL-1 ge
roduced the most pronounced effects upon DYN-ind

eeding, firmly implicating the� opioid receptor in media
ng this response[58]. This level of analysis has not yet be
pplied to non-opioid orexigenic peptide agonists.

Neuropeptide Y (NPY) is among the most potent c
ral orexigenic peptides (see reviews:[30,37,43]), stimu-
ating feeding and body weight gain following ventricu
13,44,53]and direct administration into the hypothalam
araventricular nucleus (PVN:[7,60–62]). In contrast, ad
inistration of antagonists, antisera or AS ODN probe

ected against NPY decrease food intake and weight
1,36,63]. Opioid involvement in feeding elicited by NP
as confirmed initially by the ability of the general opio
ntagonist, naloxone to decrease the magnitude, but n

atency of NPY-induced feeding following systemic and v
ricular administration[42,44,56]. Administration of nalox
ne into the medial, but not rostral or caudal nucleus tra
olitarius (NTS) blocked NPY-induced feeding elicited fr
he PVN[32,34]. Moreover, Ntx pretreatment into the cen
f
Adult male Sprague–Dawley rats (275–300 g; Cha

iver Laboratories, Wilmington, MA) were individual
oused in suspended wire cages and maintained on a

ight:12 h dark cycle with rat chow pellets (Purina 5001
ent Diet, St. Louis, MO) in food bins and water availa
d libitum. All animals were pretreated with chlorpromaz
3 mg/kg, i.p.) and were anesthetized with ketamine
140 mg/kg, i.m.). A stainless steel guide cannula (22-ga
lastics One, Roanoke, VA) was implanted steroetaxi

Kopf Instruments, Tujunga, CA) into the left lateral v
ricle using the following coordinates: incisor bar (+5 m
.5 mm anterior to the bregma suture, 1.3 mm lateral to
agittal suture, and 3.6 mm from the top of the skull. E
annula was secured to the skull by three anchor screws
ental acrylic. All animals were allowed at least 2 week
ecover from stereotaxic surgery before behavioral te
egan. After completion of behavioral testing, which t
pproximately 6 to 8 weeks for each animal, all rats w
acrificed with an overdose of anesthetic, and cannula p
ents were verified by visual inspection; all animals in
ata analysis had cannula placements in the lateral ven

.2. Preliminary NPY dose–response curve

To confirm previously determined increases in f
ntake following NPY, and to select a dose of NPY t
roduced robust effects at the lowest concentratio
ose–response curve for NPY was created by testing an

rom the lowest to highest doses. All behavioral testing
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conducted in the home cage between 2 and 8 h after the
onset of the light cycle to minimize circadian effects on
food intake. Rats were adapted to at least 4 days of baseline
testing to eliminate any novelty-induced feeding responses
elicited by placement of the pellets on the floor of the cage.
It should be noted that intake during this phase of the light
cycle is minimal as reflected by the low control values. In
this and all subsequent protocols, before any experimental
conditions, the food bins were removed from each cage and
replaced with preweighed food pellets. Each intake value was
measured by the weight (g) of the food pellets and adjusted
by spillage that was collected on paper towels placed below
the wire mesh cage. After baseline measurements, a group of
six cannulated rats was assessed for food intake after 1, 2 and
4 h after microinjection of NPY (Peninsula Labs, Belmont,
CA) at doses of 0, 0.12, 0.47, and 1.17 nmol (0, 0.5, 2.0,
and 5.0 ug) administered at weekly intervals. All infusions
were administered in a 2-ul volume of distilled water over
30 s through a stainless steel internal cannula (28-gauge,
Plastics One) that extended 0.5–1.0 mm beyond the tip of
the guide cannula, and which was connected to a Hamilton
microsyringe by polyethylene tubing. After infusion, the
internal cannula was removed and immediately replaced with
a stainless steel dummy cannula (28-gauge, Plastics One) to
prevent any effusion and to insure cannula patency between
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exposed to a maximum of four different antagonist treatments
in counterbalanced orders with a 1-week interval between
the treatments. Subgroups (n= 6) of rats, matched for NPY-
induced intake, were tested at weekly intervals across the fol-
lowing antagonist pretreatment conditions paired with NPY:
the general opioid antagonist, Ntx (Sigma-Aldrich, St. Louis,
MO) at doses of 1.89, 7.56, 15.12 or 30.24 ug (5–80 nmol),
the� opioid antagonist, BFNA (Sigma-Aldrich) at doses of
2.45, 9.8 or 19.6 ug (5–40 nmol), the� opioid antagonist, NTI
(Sigma-Aldrich) at doses of 2.55, 10.2 or 20.4 ug (5–40 nmol)
or the�1 opioid antagonist, NBNI (Sigma-Aldrich) at doses
of 3.65, 14.6 or 29.2 ug (5–40 nmol). The pretreatment time
intervals of 1 h (Ntx, NTI, NBNI) and 24 h (BFNA) between
antagonist and agonist treatments reflected the respective
peak and selective actions of the opioid antagonists[5,50–52]
and was consistent with our previous studies evaluating an-
tagonist effects upon feeding elicited by BEND and DYN
A1–17[58,59]. Food intake was assessed 1, 2, and 4 h follow-
ing the second (NPY) injection.

2.4. AS ODN probes, NPY, and food intake

As described previously, all 44 cannulated rats in the AS
studies were initially assessed for food intake 1, 2, and 4 h
after vehicle and after a NPY dose of 0.47 nmol to verify
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microinjection conditions. A repeated-measures analysis
variance revealed that significant differences in food inta
were observed across injection conditions (F(3,18) = 8.54,
P< 0.001) and across test times (F(2,6) = 16.12,P< 0.0001).
Dose-dependent increases in food intake across the t
course relative to vehicle occurred following the 0.12, 0.4
and 1.17 nmol NPY doses (Table 1). Although the 0.47 nmol
dose of NPY produced a very consistent, but not the high
feeding response across the time course, it was chosen fo
subsequent opioid antagonist and opioid AS probe stud
because opioid AS effects have previously been obser
for moderate, but not optimal doses of either 2DG-induc
feeding[12,38]or DAMGO-induced feeding[41].

2.3. General and selective opioid antagonists, NPY, and
food intake

All antagonists were administered in 2–5 ul volumes
distilled water to guarantee solubility of the compounds. A
19 cannulated rats in the four antagonist studies were initia
assessed for food intake 1, 2, and 4 h after vehicle and a
a NPY dose of 0.47 nmol to verify that all animals displaye
feeding responses following the agonist. The animals w

Table 1
Alterations in food intake following NPY

Dose (nmol)

Vehicle 0.12

Time (h) 1 2 4 1 2
Intake (g) 0.2 1.1 2.4 2.4 2.4
e

t
e

r

that all animals displayed feeding responses following
agonist. All AS probes were administered in 10 ug doses
solved in 5 ul volumes of 0.9% normal saline based upon th
previously determined effectiveness in agonist-induced fe
ing studies[39–41,58,59]without producing nonspecific ef
fects (for review, see[48]). All phosphodiester oligodeoxynu
cleotides (Midland Certified Reagent, Midland, TX) were p
rified in our (G.W. Pasternak and G.C. Rossi) laborator
and the identified locations of the AS probes were based
the different opioid receptor gene sequences listed in G
Bank (Table 2). The opioid AS sequences directed against
individual exons of the MOR-1, DOR-1, KOR-1 or KOR
3/ORL-1 opioid receptor genes used in the present st
in rats are based upon the rat clone (for review, see[54]).
During each 6-day test phase, rats received microinject
of their particular AS probes on days 1, 3, and 5 as pre
ously described[39–41,58,59]; this time course of treatmen
both down-regulates the synthesis of new receptors and
mits turnover of existing receptors (for review, see[48]). Rats
were exposed to a maximum of two different AS treatme
with a minimal 2-week interval between AS treatments. S
groups (n= 6 each) of the 44 rats tested in this paradigm w
assigned to the following conditions by matching increas

0.47 1.17

1 2 4 1 2 4
4.1 6.0 6.4 6.4 7.2 7.9
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Table 2
Sequence of antisense oligodeoxynucleotides

Probe Sequence

MOR-1 opioid receptor clone
Exon 1 AS CGC CCC AGC CTC TTC CTC T
Exon 2 AS TTG GTG GCA GTC TTC ATT TTG G
Exon 3 AS TGA GCA GGT TCT CCC AGT ACC A
Exon 4 AS GGG CAA TGG AGC AGT TTC TG

DOR-1 opioid receptor clone
Exon 1 AS TGT CCG TCT CCA CCG TGC
Exon 2 AS ATC AAG TAC TTG GCG CTC TG
Exon 3 AS AAC ACG CAG ATC TTG GTC AC

KOR-1 opioid receptor clone
Exon 1 AS GCT GCT GAT CCT CTG AGC CCA
Exon 2 AS CCA AAG CAT CTG CCA AAG CCA
Exon 3 AS GGC GCA GGA TCA TCA GGG TGT

KOR-3/ORL-1 opioid receptor clone
Exon 1 AS GGG GCA GGA AAG AGG GAC TCC
Exon 2 AS GAC GAG GCA GTT CCC CAG GA
Exon 3 AS GGG CTG TGC AGA AGC CGA GA

food intake after NPY (0.47 nmol) administration: AS probes
directed against exons 1, 2, 3 or 4 of the MOR-1 gene; directed
against exons 1, 2 or 3 of the DOR-1 gene; directed against
exons 1, 2 or 3 of the KOR-1 gene; or directed against exons 1,
2 or 3 of the KOR-3/ORL-1 gene. Twenty-four hours after the
last AS treatment (day 6), all rats received NPY (0.47 nmol),
and food intake was assessed after 1, 2, and 4 h. Consis-

tent with our observations in previous studies (e.g.,[58,59]),
neither the opioid antagonists nor the antisense probes pro-
duced any adverse effects on the general health of the
animals.

2.5. Statistics

To determine significant effects in the antagonist and AS
paradigms, separate two-way repeated-measures analyses of
variance were performed with the treatment conditions (i.e.,
different doses of a specific antagonist or various exons of a
specific AS probe) as one variable and test times as the second
variable. Tukey comparisons (P< 0.05) were used to deter-
mine individual significant agonist effects relative to vehicle
treatment, and to determine individual significant antagonist
or AS probe effects relative to NPY treatment.

3. Results

3.1. Opioid antagonist effects upon NPY-induced feeding

Significant differences in food intake were observed
among treatment conditions (F(14,101) = 4.18,P< 0.0001),
across test times (F(2,202) = 71.93,P< 0.0001) and for the
i ,
P bust
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ig. 1. Alterations (mean± S.E.M.) in food intake (g) after i.c.v. adm

entricular pretreatment with the general opioid antagonist, naltrexone (Ntx)
BFNA) at doses of 5, 20 or 40 nmol, the� opioid antagonist, naltrindole (NTI) a
NBNI) at doses of 5, 20 or 40 nmol. Significant increases in food intake by
ecreases in NPY-induced feeding by opioid antagonists are denoted by cro
nteraction between conditions and times (F(28,202) = 2.14
< 0.014). NPY at a dose of 0.47 nmol produced a ro

on of either vehicle (Veh), neuropeptide Y (NPY: 0.47 nmol) or NP

at doses of either 5, 20, 40 or 80 nmol, the� opioid antagonist,�-funaltrexamine
t doses of 5, 20 or 40 nmol, or the�1 opioid antagonist, nor-binaltorphamine
NPY relative to vehicle treatment are denoted by asterisks (*), and significant

sses (+).
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increase in feeding after 1, 2, and 4 h relative to vehicle treat-
ment (Fig. 1). The magnitude of NPY-induced feeding was
significantly reduced (50–80%) across the 4 h time course by
the 5 and 20 nmol Ntx doses, and was abolished across the
4 h time course by the 40 and 80 nmol doses of the general
opioid antagonist (Fig. 1, upper left panel). The magnitude
of NPY-induced feeding was significantly reduced (65–75%)
across the 4 h time course by the 20 nmol BFNA dose, and
was abolished across the 4 h time course by the 5 and 40 nmol
doses of the� opioid antagonist (Fig. 1, upper right panel).
The magnitude of NPY-induced feeding was significantly re-
duced (75%) across the 4 h time course by the 20 nmol NTI
dose, and was abolished across the 4 h time course by the 5
and 40 nmol doses of the� opioid antagonist (Fig. 1, lower
left panel). The magnitude of NPY-induced feeding was sig-
nificantly reduced (65–88%) across the 4 h time course by the
20 nmol NBNI dose, and was abolished across the 4 h time
course by the 5 and 40 nmol doses of the�1 opioid antagonist
(Fig. 1, lower right panel).

3.2. Opioid AS probe effects upon NPY-induced feeding

Significant differences in food intake were observed
among treatment conditions (F(14,151) = 3.13,P< 0.0003),
across test times (F(2,302) = 49.56, P< 0.0001), but
n es
( ced

a robust increase in feeding after 1, 2, and 4 h relative to
vehicle treatment in this paradigm (Fig. 2) comparable to
that observed in the previous protocol. The magnitude of
NPY-induced feeding was respectively abolished (2–4 h) or
significantly reduced (1 h) by AS probes directed against
exons 1 (80–95%), and 2 (75–87%) of the MOR-1 gene
(Fig. 2, upper left panel). Whereas the AS probe directed
against exon 3 of the MOR-1 gene significantly reduced
(42–54%) NPY-induced feeding over the 4 h time course,
the AS probe directed against exon 4 of the MOR-1 gene
was ineffective (Fig. 2, upper left panel). The magnitude of
NPY-induced feeding was significantly reduced across the 4 h
time course by AS probes directed against exons 1 (39–58%)
and 2 (72–84%) of the DOR-1 gene; the AS probe directed
against exon 3 was ineffective (Fig. 2, upper right panel). The
magnitude of NPY-induced feeding was significantly reduced
across the 4 h time course by AS probes against the KOR-1
gene with the probe directed against exon 1 (82–87%) pro-
ducing more robust effects than exon 2 (42–59%); the AS
probe directed against exon 3 produced effects only after 1 h
(Fig. 2, lower left panel). Although NPY-induced feeding
was significantly reduced across the 4 h time course by AS
probes against the KOR-3/ORL-1 gene, the magnitude of ef-
fect of the probe against exon 3 (39–49%) was generally less
pronounced. Whereas the AS probe directed against exon 1
was transient (4 h), the AS probe directed against exon 2 was
i

F
v
1
b

ot for the interaction between conditions and tim
F(28,302) = 0.78, ns). NPY at a dose of 0.47 nmol produ
ig. 2. Alterations (mean± S.E.M.) in food intake (g) after i.c.v. administrati
entricular pretreatment with antisense (AS) probes (10 ug) directed agains
, 2 or 3 of the DOR-1, KOR-1 or KOR-3/ORL-1 opioid receptor genes. Sign
y asterisks (*), and significant decreases in NPY-induced feeding by opioid
neffective (Fig. 2, lower right panel).
on of either vehicle (Veh), neuropeptide Y (NPY: 0.47 nmol) or NPY after
t exons (Ex) 1, 2, 3 or 4 of the MOR-1 opioid receptor gene or against exons (Ex)
ificant increases in food intake by NPY relative to vehicle treatment are denoted
AS probes are denoted by crosses (+).
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4. Discussion

The strong and robust feeding response elicited by NPY
was significantly reduced by general opioid receptor pretreat-
ment, consistent with previous findings[16,32,34,42,44,56].
Furthermore, the ability of the selective� and� opioid an-
tagonists, BFNA and NBNI to reduce NPY-induced feeding
is also consistent with a previous report[33]. Whereas this
previous study failed to observe reductions in NPY-induced
feeding following� opioid antagonism with NTI, the present
study observed significant decreases in NPY-induced feeding
following NTI. This difference can be explained by the use of
a lower (0.47 nmol), but still very effective orexigenic dose
of NPY than the dose (1.17 nmol) employed previously[33].
The effects of the AS probes directed against the MOR-1,
DOR-1, KOR-1, and KOR-3/ORL-1 genes provided highly
consistent and converging lines of evidence concerning opi-
oid mediation of NPY-induced feeding. Thus, like the� an-
tagonist, BFNA, AS probes directed especially against exons
1 and 2 of the MOR-1 gene virtually eliminated NPY-induced
feeding with AS probes directed against exons 3 and 4 pro-
ducing respectively smaller magnitudes of effects. Similar to
effects of the� antagonist, NTI, AS probes directed against
exons 1 and 2 of the DOR-1 gene significantly reduced NPY-
induced feeding. An AS probe directed against exon 3 of the
DOR-1 gene was ineffective. Finally, like the� antagonist,
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Table 3
Comparison of opioid antagonist and AS probe effects upon feeding re-
sponses elicited by NPY and the opioid peptides, BEND and DYN

Condition NPY BENDa DYNb

BFNA ↓↓ ↓↓ ↓↓
MOR-1
AS Ex 1 ↓↓ ↓↓ ↓
AS Ex 2 ↓↓ ↓ None
AS Ex 3 ↓ ↓↓ None
AS Ex 4 None ↓↓ None

NTI ↓↓ ↓↓ ↓↓
DOR-1
AS Ex 1 ↓ ↓ ↓
AS Ex 2 ↓↓ None None
AS Ex 3 None None None

NBNI ↓↓ ↓↓ ↓↓
KOR-1
AS Ex 1 ↓↓ None ↓↓
AS Ex 2 ↓ None ↓↓
AS Ex 3 ↓ None None
KOR-3
AS Ex 1 Min None ↓↓
AS Ex 2 None None ↓
AS Ex 3 ↓ None None

Note. ↓↓: >70% reduction;↓: ∼50% reduction; Min:∼20–30% reduction;
None: not significant.

a Data derived from Ref.[59].
b Data derived from Ref.[58].

exon 4 of the MOR-1 gene potently affects feeding follow-
ing BEND and DAMGO, it produces minimal (NPY) or no
(M6G) effects on other agonist-induced feeding responses.
The MOR-1 AS exon-specific effects of DAMGO and mor-
phine (exons 1 and 4, not 2 or 3) and M6G (exons 2 and 3,
not 1 or 4) on feeding and analgesic responses suggest that
different isoforms of the MOR-1 gene exist (e.g.,[46,47]).
However, like BEND, the sensitivity of NPY-induced feed-
ing to multiple MOR-1 AS probes suggests that this re-
sponse is mediated by multiple coding regions of the MOR-1
gene.

Feeding elicited by NPY is most markedly reduced by
an AS probe against exon 2 of the DOR-1 gene, but is also
reduced by an AS probe directed against exon 1. The latter
probe abolished feeding elicited by the� opioid agonist,
Deltorphin, produced less pronounced effects upon feeding
elicited by BEND and DYN, and failed to affect M6G-
induced feeding[40,58,59]. Feeding elicited by NPY is most
markedly reduced by an AS probe against exon 1 of the KOR-
1 gene, but is also reduced by AS probes directed against ex-
ons 2 and 3 of the KOR-1 gene and exons 1 and 3 of the KOR-
3/ORL-1 gene. The AS probe against exon 1 of the KOR-1
gene abolished feeding elicited by either DYN or the�1 opi-
oid agonist, U50488H, but failed to affect feeding elicited by
BEND and M6G[40,58,59]. The modest effects upon NPY-
induced feeding of AS probes directed against exons 1 and 3
o t ef-
f
a 6G
[ D
1
BNI, the AS probe directed against exon 1 of the KO
ene significantly reduced NPY-induced feeding. AS pro
irected against exons 2 and 3 of the KOR-1 gene an
ns 1, 2, and 3 of the KOR-3/ORL-1 gene produced sm
agnitudes of effects. One caveat regarding the present
as that NPY-induced feeding per se was not reassesse

owing antagonist and antisense treatments. Therefore
annot definitively rule out that the effects were due to Ta
hylaxis. However, as the remainder of the discussion
ates, we have observed a number of instances of antag
nd antisense-specific effects as a function of the orexi
gonist employed.

These data indicate that feeding elicited by NPY is sim
o that of opioid peptides and opiate agonists and me
ites in their sensitivity to opioid antagonists and AS pro
Table 3). Thus,� antagonists decrease NPY-induced fe
ng to the same degree as feeding responses to BEND,

orphine, DAMGO and M6G (e.g.,[40,41,58,59]). The sen
itivity of NPY-induced feeding to the AS probe direc
gainst exon 1 of the MOR-1 gene is shared by feedin
ponses elicited by BEND, DYN, morphine and DAMG
ut not M6G. The sensitivity of NPY-induced feeding
he AS probe directed against exon 2 of the MOR-1 g
s shared by feeding responses elicited by M6G and
esser degree, BEND, but not morphine, DAMGO or DY

hereas the AS probe directed against exon 3 of the M
gene significantly and potently reduces feeding ind

y BEND and M6G, it produces more modest effects u
PY-induced feeding and fails to affect feeding follow
YN or DAMGO. Whereas the AS probe directed aga
f the KOR-3/ORL-1 gene stand in contrast to their poten
ects upon feeding induced by DYN and OFQ/N1–13and the
bsence of effects upon feeding induced by BEND and M

39,40,58,59]. Thus, whereas feeding elicited by BEN
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appears more selective to�/MOR-1 effects[59] and whereas
feeding elicited by DYN appears more selective to�/KOR-1
effects[58], the opioid mediation of NPY-induced feeding
appears to involve all three major opioid receptor subtypes.

The ability of multiple opioid receptor subtypes to modu-
late NPY-induced feeding is similar to the involvement of�,
�, and� receptors in lipoprivic (mercaptoacetate)-induced
feeding using antagonist and AS approaches[64], the in-
volvement of� and� receptors in both glucoprivic (2DG)-
induced and food deprivation-induced feeding using an an-
tagonist approach[3–5], of �, �, and� receptors in 2DG-
induced feeding using an AS approach[12], and of� and to a
lesser degree� and� receptors in deprivation-induced feed-
ing using an AS approach[22,23]. Feeding responses elicited
by NPY have been related to energy homeostasis relative to
palatability given its induction of chow intake relative to the
dilute sucrose intake[18]. The striking similarities of opioid
antagonist and AS effects upon feeding responses induced by
NPY and 2DG provide further support for their previously
established inter-relationship such that 2DG increases NPY
mRNA levels in the arcuate nucleus[2,57], and NPY lev-
els are inversely related to administered glucose levels[68].
However, NPY, like food deprivation, is far more effective
in increasing the “break point” for food pellet reinforcement
relative to either 2DG or insulin[27].

Where and how might NPY and the opioid system in-
t ion?
N lated
p um-
b me-
d e.g.,
[ with
n pro-
o rcu-
a ity
t
s it
f re-
c C
o
� -
p
i d
r opi-
o ula-
t ng,
a .g.,
[ ox-
o he
t
d ntag-
o ing
[ pep-
t te
a ther
o nin-

concentrating hormone: see review:[37]) to stimulate feeding
under a variety of homeostatic and palatable conditions.
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